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We present here a solution to an asymmetric eight-vertex model using the recent 
correspondence between vertex models and factorizable S matrices. 
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1. INTRODUCTION 

We present here a solution to an asymmetric eight-vertex model in two 
dimensions. While the model is a special case of the free-fermion models 
solved by Fan and Wu, (1) we still believe our solution of it interesting 
because it is not based on Fisher's dimer city approach (2~ used in Ref. 1 but 
rather on the recently discovered connection between solvable vertex mod- 
els on the one hand and certain "factorizable" S matrices on the other. (3'4) 
Thanks to this connection, the vertex problem reduces to the determination 
of a corresponding two-body S matrix, which is a lot simpler. For  example, 
Baxter's eight-vertex model (5) corresponds to A. B. Zamolodchikov's Z 4 S 
matrix. (6) In this paper we derive a new S matrix and use it to solve the 
above-mentioned asymmetric eight-vertex model. We also show that there 
are no other physically interesting eight-vertex models. Since completing 
this work we have become aware of a similar (more exhaustive) classifica- 
tion of solvable six- and eight-vertex models. (7~ This reference, however, 
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does not go into the explicit solution of the vertex model or the S matrix or 
their interconnection. Thus the basic contribution made here is as follows. 
(i) Provide one more instance where the S-matrix approach to a vertex 
model is seen to be correct and efficient, (ii) Provide yet another relativistic 
factorizable S matrix. While the underlying Lagrangian is not known in 
general, a special case reduces to the S matrix of the supersymmetric 
sine-Gordon theory found by Shankar and Witten. (8) 

Since Refs. 3 and 4 review the vertex models, S matrices, and their 
interrelationship, we shall be content to give here a very schematic over- 
view, starting with the vertex models. 

Imagine an N • N lattice on the links or bonds of which reside some 
discrete degrees of freedom. For a given bond configuration on the lattice 
we associate a Boltzmann factor of the form 

N 2 N 2 

e-Be = r [  r = 1"I r  
i = l  i = l  

where o~ i . . . . .  ~i label the states of the four bonds meeting at site i, i.e., 
label the "vertex" there, and ~(i) is the Boltzmann factor associated with 
that site. The goal is to calculate, for a given set of weights ~ ,  

= l imZ 1/N2 ---- lim ~0(i) (1.1) 
N---~ c,~ co s. i 

the partition function per site in the thermodynamic limit. (Note that in 
some cases, several ~0's will be zero, i.e., some vertices will be forbidden. 
Several others may also be related by some symmetries.) We can write 

Z = Tr T N (1.2) 

where the transfer matrix T is defined as follows. Consider a row of the 
lattice, shown in Fig. 1. Let a and a '  denote collectively the states of the 
vertical bonds above and below the row; while i and i' describe the 

(2' 

i i' 

Fig. 1. A row of the lattice. The  e lement  T~,  (where c~ a n d  c( are  collect ive labels  for the 
" in i t i a l "  and  " f ina l"  vert ical  ar rows a t t ached  to the g iven row) is g iven by  s u m m i n g  the 
p roduc t  of Bo l t zmann  factors  over  the hor izonta l  states for the given choice ~ and  ~'. 
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Fig. 2. (a) A three-body S matrix as a factorized product of three two-body S matrices. Here 
O and 0' are the rapidity differences. (b) The amplitude, for a different choice of initial 
positions. Consistency requires that we get the same number in both cases. 

horizontal bonds at the two ends for fixed value of a and a', sum over all 
allowed horizontal states with the appropriate weight and the periodic 
boundary condition i -- i'. The resulting sum gives the element T~,, i.e., T 
acts on the vertical "spins," with horizontal spins summed over. One can 
then see that Eq. (1.2) defines a Z with toroidal boundary conditions. In 
the thermodynamic limit we simply need the dominant eigenvalue of T. 

Now for the S matrices which describe two-body collisions in 1 + 1 
dimensions. They are determined not from some given interaction Hamilto- 
nian but as follows. We assume they obey the usual conditions of Lorentz 
invariance, crossing, unitary, etc., and in addition are elastic and factor- 
izable--the N-body S matrix is a product of N ( N -  1)/2 two-body S 
matrices, one for each two-particle encounter. For example, Fig. 2a shows a 
three-body S matrix as a product of three two-body S matrices. Without 
changing of any of the initial momenta (or rapidities) we can get them to 
collide in a different sequence, as in Fig. 2b. Consistency of factorizability 
requires we get the same answer both ways. 

Since each two-body collision is given by a matrix in internal (isospin) 
space, factorizability imposes some very stringent and overdeterminate set 
of constraints called Yang-Baxter  or triangle equations. If r~ S2~(O) is the 
two-body matrix element for incoming particles (a, fi) and out-going 
particles (-f, 8) with relative rapidity 0, then these equations are (see Fig. 2) 

B,r , o ,~ , ,  o ' ) s J " ( o )  ~,B, o,,r s~,,r,(e )s~,,~ (e + = s~,,e,,(e)sg,, (e + e')se~( r" (e ')  

When solutions do exist, these equations determine the ratios of the 
two-body matrix elements at each rapidity. Unitarity then fixes the overall 
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scale and a unique solution can be found if we impose some analyticity 
requirements. This is how S matrices have been found in the past. 5 

Here we present one more such S matrix describing collisions between 
two species of particles, call them bosons (b) and fermions (f).  Both are 
neutral, but we require that the fermions be created or destroyed only in 
pairs. For a special value of one of the parameters, our solution becomes 
the S matrix of the supersymmetric sine-Gordon model, found earlier by 
Shankar and Witten. (8) In general, we do not know what the underlying 
field theory is, though our search will be briefly described. 

We then proceed to exploit a certain connection between every 
factorizable S matrix and a related vertex model on a two-dimensional 
lattice to define and solve the latter, which in this case is an asymmetric 
eight-vertex model. 

Now for the connection between the two problems. In his paper  on the 
Z 4 S matrix, (l) A. B. Zamolodchikov showed that if one defines a vertex 
model with weights 

o~ = 0S2~ (1.3) 
where ~ S~/3(0, g) is a given two-body S matrix for rapidity 0 and coupling 
constants g and 0 is any function independent of a, fl, 3', or 3, then such a 
vertex model is solvable, in the sense that 

[ T(O, g), T(O', g)]  = 0 (1.4) 

For example, his Z 4 S matrix defines Baxter's eight-vertex model. (5) Conse- 
quently, the S matrix we have found will also allow us to define a solvable 
vertex model, which happens to be an asymmetric eight-vertex model. 

But we can go further and solve the model as follows. In Ref. 6, 
A.B.Z. also observed that the ~ for the Baxter model was very simply 
related to one of the Z 4 S matrix elements and said an explanation needed 
to be found. A brief explanation of this was provided by one of us in Ref. 
10. A more detailed analysis and general result followed in Ref. 4, where it 
was shown that if we set up any solvable vertex model a la Zamolodchikov 
and let ~0 = S (instead of proportional to it), then 

~ ( s )  = 1 (in the P.R.) (1.5) 

where the P.R. (principal region) corresponds to 0-imaginary, 0 < Im 0 < ~r, 
g such that all weights are positive. (The weights must also obey some 
other conditions. They do in this case, as described in Section 3.) Given this 

5 Reference 9 contains a comprehensive review. For a simpler one, see Exact S-matrices in 
two-dimensional field theories---A review, R. Shankar, Yale preprint No. COO 3075-199, 
1979. 
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result, the answer for to -- pS follows by a simple rescaling: 

~(to) = O (in the P.R. ) (1.6) 

since scaling all weights by a factor 0 does the same to ~ .  (This idea will be 
repeatedly used below.) Here is a (fictitious) illustrative example. Let there 
be just two amplitudes $1, and $2 in the S matrix and let their ratio, 
determined by the Yang-Baxter equations be 

$1(0) : $2(0 ) = c o s ( -  iO) : s i n ( -  iO) (1.7) 

We now have the result 

~ ( S  1 ,$2)--  1 (1.8) 

Consider now the associated vertex problem with weights to1 and to2 in the 
ratio 

to1 :to2 = 1 :x  (1.9) 

We first choose O = 0 x such that 

091 :CO 2 = S1:  82, i.e., tan(- iOx)  = x (1.10) 

then 

I x 

tol 
-- S l (O  x ) ~(S l (0x  ), S2(Ox ))  

tol 
- S,(Ox----- ~ using Eq. (1.8) (1.11) 

Thus the knowledge of S(0x) implies a knowledge of the solution to the 
associated vertex problem because of the result ~ (s) = 1. 

(In general, however, we may have more independent ratios of weights 
than there are parameters (O, g). In such a case a family of problems, but 
not all, can be solved and that too only in the P.R. Sometimes symmetries 
of ~ may help us get the answer elsewhere.) 

The reader should consult Ref. 4 for a careful analysis of the deriva- 
tion leading to Eq. (1.5) and to see the connection with the related works of 
Stroganov,(11) Schultz,(12) A.B.Z.,O) Baxter,(13) Pokrovsky and Bashilov. (14) 
In all these cases ~ is computed by deriving some functional equations and 
looking for a solution with some analytic properties. In the derivation of 
the equation, however, boundary conditions are sometimes ignored (which 
is dangerous since unphysical regions with negative or complex weights 
necessarily enter the argument) or the analytic properties (known for S but 
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not ~ )  are assumed. Even Ref. 4 is not completely satisfactory: A Lee- 
Yang-like theorem on the zeros of an eigenvalue of T is proven only for 
special cases and assumed in general. 

In Section 2 we derive a new S matrix and study some of its features. 
In Section 3, we describe the corresponding eight-vertex model and its 
solution. We shah see that along with Baxter's symmetric eight-vertex model, 
this exhausts the set of eight-vertex models with commuting transfer matrices. 
(We do not include here models with unphysical weights.) 

Upon solving our model using this trick, we searched the literature to 
see if any previously solved model coincided with ours, at least for some 
range of parameters, so that we could check our result. We found more 
than what we bargained for: our model is a special case of the free-fermion 
models solved by Fan and Wu (1) using Fisher's (2) dimer city trick. 

2. THE S-MATRIX 

Consider two species of particles, bosons (b) and fermions (f). We 
require that f ' s  be created or destroyed only in pairs, though they are their 
own antiparticles, as are the bosons. The eight allowed amplitudes are 
shown in Fig. 3 along with their names. The incoming particles correspond 
to south and west bonds, while the outgoing ones, the other two. For 
example, 

Sc(O ) = ( f ( -  0 /2)b(0 /2) I f (O/2)b( -  0/2)) (2.1) 

where ___ 0 /2  are the C.M. rapidities of the colliding particles. [We remind 
the reader that p ~ =  ( E , p ) =  m(coshO, sinhO) defines the rapidity 0 and 
that under a Lorentz transformation, 0 ~  0 + const.] We require (i) that 
S(O) be meromorphic in 0, (ii) that S(O) be real on the Im0 axis, (iii) that 
under 0---)i~r- O, we get the crossed amplitude, i.e., the one with the 
vertical lines exchanged; thus the first four amplitudes are crossing symmet- 
ric while 

Sc< >sa 
O<--~i~r--O (2.2) 

O<---> i~ - -O  

SQ 

. . . .  -" ~  , ~  : : ~ F -  

S~ S b S~ S c S~ S d S~ 

Fig. 3. The allowed amplitudes or vertices. The solid lines are f,  the dotted ones b. 
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(iv) and that S(O) obey unitarity: 

s(o)s T(_ 0) = (2.3) 

where 

f f  bb fb bf ;SoS O0] 
S =  Sd Sn 0 0 (2.4) 

o 0 Sb 
0 0 S c &  

Finally, we require that the amplitudes obey the Yang-Baxter  triangle 
equations to ensure factorizability. The details are relegated to the Appen- 
dix. We find that these equations require 

(i) S c = Se (2.5a) 

(ii) Sd = Sa (2.5b) 

(iii) S b -- S~ (2.5c) 

At this point we have a choice. If we let Sa = Sa, we get the A.B.Z. solution 
for the S matrix or equivalently Baxter's ratio of weights, the symmetric 
eight-vertex case. If we insist Sav ~ S~, we get 

Sa:S :Sb :Sc:S  
sn sn i sn 1 sn 

= l + ~ r : l - - - r  : : �9 i k  (2.6) 
cn dn f cn dn cn -~n 

where f is a real free parameter, while 

r = - i(1 - k 2 + l / f 2 )  V2 (2.7) 

and sn, cn, dn are Jacobi's elliptic functions of modulus k (is) and argument 

K'(k)O 
u - - -  (2.8) 

Here K'(k)  is the complete elliptic integral of modulus k' = (1 - k2) 1/2. For 
later use we add that K(k ' )  = K'(k) .  While f can be any real number here, 
for the use in the vertex model we require that 

1 0 < k < 1 (2.9) 
f >  [ 2 k ( k  + 1)] t /2 ,  

to ensure positivity of weights on the Im 0 axis for 0 < Im 0 < ~ i.e., this is 
the P.R. 



702 Dorla and Shankar 

From the unitarity equation we get, upon eliminating S c in favor of S b : 

sn2( OK' / ~r) 
Sb(O )So(-  0 ) = sn2(OK,/~r ) + fZanZ(OK,/~r ) (2.10) 

while crossing requires 

So(O) = S~(i~ - O) (2.11) 

The solutions to these equations are not unique: one can multiply any one 
solution by a function r of the same class (meromorphic, etc.) obeying 

~(0)dp(-  0) = 1 (2.12a) 

qb(0) = 6)(i~r - 0 )  (2.12b) 

If, however, we seek a solution with no zeros or poles in the physical strip, 
0 < Im0 < ~r, ~ = 1, (6) there is a unique "minimal" solution. It is obtained 
as follows: (16) Since lnSb is analytic in the strip, consider a contour C 
surrounding it clockwise. We may write 

lnSb(O) sinh(z - 0) = -~i ~ az lnSb(Z ) 

The vertical pieces at infinity vanish owing to the sinh in the denominator. 
Using the fact that 

sinh(z + iTr) = - s inh(z)  

Sb(z + i~r) = Sb(--Z) (crossing) 

we get 

1 ; _ ~  dz l n [Sb(z )Sb( -z ) ]  (2.13) lnSb(O) = 2-~ ~ s i nh~ - -  O) 

Using Eq. (2.10) we get finally 

l +~ dz [ Sn2(zK'/~r'k) In 
lnSb(O) 

__~  sinh(z - 0) snZ(zK'/~r,k) +fZdnZ(zK,/~r,k) 

(2.14) 

The other amplitudes then follow from Eq. (2.6). / t  is for this minimal 
solution that the result ~ (S )  = 1 in the P.R. is true. 

Consider the special case k = 1. Using 

sn(u,k = 1) = tanhu 

en(u,k = 1) = dn(u,k = 1) = sechu 

K'(~r) = 7r/2 
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we get essentially the amplitudes for the supersymmetric sine-Gordon 
problem obtained by Shankar and Witten. (8) (We say essentially because 
some phases have to be chosen differently for the state vectors.) In this case 
the underlying Lagrangian is known: 

J ( k =  1 ) = f [ 1  2 i 1 1 cos2flq)ld2 X ~ ( ~ )  + ~ f f ~ -  ~ r  B~ + 

(2.15) 
where q~ is a real scalar, ~p is a Majorana (self-conjugate) fermion, and/3 is a 
free parameter related to the f in Eq. (2.6). For k # 1 we do not know 
S ( k  r 1). (Since cn[% (1 - k2) 1/2] = cosq0 when k = 1, one may guess that 
cos ~ cn in Eq. (2.11), but that does not work, and neither do many other 
guesses like sn dn, (sn dn) 2, cn 2, etc.) 

3. SOLUTION TO AN A S Y M M E T R I C  EIGHT-VERTEX MODEL 

Consider now an asymmetric eight-vertex model with vertices in one- 
to-one correspondence with the eight amplitudes of the two-body S matrix. 
Let us parametrize the weights as follows: 

o) a 1 + r sn / cndn  

~ , ( i~r- 0 )K'  1 - r sn / cndn  
OK ~b = cos ~ cos ~ s  ( -  i / f ) s n / c n  dn (3.1) 

~c 1/cn 

~d -- ik sn / dn 

where r = - i ( 1  - k2+  f-2)1/2, and the argument of the elliptic functions 
is u = OK'/rr, while the modulus is k. The extra crossing symmetric factors 
of cosines are introduced to eliminate some singularities on the Im 0 = 0 or 
~r axes along which we must integrate to get the free energy [Eq. (2.13)]. 

In Ref. 4 it is shown that the result ~ ( s ) =  l follows for 0 = ia, 
0 < a < ~r if the following is true: 

(i) The S matrix is the minimal one. 
(ii) All weights are positive (so Perron's theorem can be used). This 

we ensure by choosing 

0 < k < 1 (3.2) 

f2 > 1 / 2 k ( k  + 1) 

(iii) A t 0 = 0 ,  

This ensures that the logarithmic derivatives of T and the monodromy 
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matrix are local operators, at 0 = 0, a crucial ingredient in the derivation. 
This is so here. 

(iv) The largest eigenvalue of T, call it A ,  (0), is crossing symmetric. 
Since exchanging the vertical bonds in Fig. 2 gives us the transpose of T (or 
equivalently T + in the P.R.), and corresponds to S c ~-> Sd, we have 

r(i,rr- O)= T+ (O) 

Using the fact that AB(0 ) is real by Perron's theorem, it follows that 
AB(0 ) -- A~(iTr - 0) = AB(i~r - 0). 

(v) There are no zeros or poles of AB(0 ) in the strip 0 < Ira0 < ~. 
Since S i are pole free in this region, so is A B . However, it could have zeros. 
This is the assumption unproven here and in Ref. 4 for a general S-matrix- 
based vertex model. Given this assumption and the result ~ (s) = 1, we get, 
by trivial rescaling, as in Eq. (1.1), the result 

Ca) c 

Writing now a dispersion relation for %/S~, we get finally, upon 
setting 0 = ia [see Eqs. (2.13) and (2.14)] 

- flF(a, k, f )  

_ sina ( ~ dxcoshx 
�9 )0 cosh2x - cos20z 

{ } X In 2f2cn2 u dn2u 

(3.4) 

where u = xK' /~ .  
As mentioned earlier, this problem, whose eight weights obey 

q..0a~0 ] "[- 0)b~/~ = 0~c~ ~ -t- 09d~ d (3.5) 

is a special case of the "free-fermion models" solved by Fan and Wu. (1) It 
has been verified numerically for many values of the parameters and 
analytically for others that the two results agree. It is, however, interesting 
that the present subset of the free fermion models which have commuting 
transfer matrices can be solved using the result ~ (s) = 1. 

If we set 0 = i,tr/2, l / f - -  [k(k + 1)] 1/2, the weights correspond to that 
of an isotropic Ising model (if we transform from the spin to vertex form 
using a dual lattice). As k varies from 0 to 1, the temperature varies from 0 
to the self-dual point. 

It may be shown that the logarithmic derivative of T at 0 = 0 yields a 
local Hamiltonian H corresponding to an X - Y  spin chain in a transverse 
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field. The ground state energy of H is related to the derivative of F at 0 = 0[ 
We do not present the results here since H may be easily solved using 
fermion operators. 

4. C O N C L U S I O N S  

First of all we have here a factorizable S matrix with two free 
parameters f and k. The underlying Lagrangian is unknown except at 
k = 1, which corresponds to the supersymmetric sine-Gordon theory. 

The result ~ (s) -- 1 then allows us to write down the free energy of an 
asymmetric eight-vertex model. Unfortunately, the result is not new since 
the weights obey the free-fermion condition and correspond to a previously 
solved case. It is, however, heartening to know that the result ~ (s) = 1 once 
again gives the correct solution. There are, however, no other eight-vertex 
models with commuting transfer matrices, as is shown in the Appendix. 

A P P E N D I X  

Here we briefly sketch the solution of the factorization equations. 
Consider first the reaction 

(a, fl,~,) = (f, f, f ) ~ ( a ' ,  fl ' ,y') = (f, f, f )  

in Fig. 1. A sum over intermediate states is implied in Figs. la and lb, there 
being two terms in each sum. In the present reaction, the terms with ffs 
running around the loop cancel on the two sides and we get 

Sd(O)Sa(O + O')Sg(O') = Sd(O)Sc(O + O')S~(O') (A1) 

In the future we will use a new notation in which S~ is replaced by i, so that 
(A1) reads 

d(O)a(O + O')d(O') = d(O)c(O + O')d(O') (A2) 

setting 0 = 0', we get 

e(0)  = e(0)  

Feeding this back to (A2), we get 

d(O) d(O') 
- (A3)  

d(0) ,7(0 3 
i.e., 

d(O ) = ad(0  ) (A4) 
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a being some constant. Consider next the reactions 

f f f  ~ fbb and bbf ~ f f f  
The first gives 

a(O)a(O + O')d(O') + d(O)c(O + O')?t(O') 

= c(O)d(O + O')a(O') + b(O)b(O + O')d(O') (A5) 
while the second, on exchanging 0 and 0' gives 

a(O)a(O + 0 ' )4 (0 ' )  + d(O)c(O + 0')~(0')  

= b(O)b(O + O')d(O') + c(O)d(O + O')a(O') (A6) 
multiplying both sides by a, and using (A4) we get an equation with Sr 
replaced by d everywhere. Comparing that to (A5) we get 

b(O)b(O + O')d(O')= b(O)b(O + O')d(O') (a7)  

Since d(O ' )~  O, we can cancel it to get 

b(O)b(O + 0') =/~(0)/~(0 + 0') (a8)  

Now we set 0' = 0 and get 

b(O) = +/~(0)  (A9) 

For statistical mechanics b = - /T is unphysical. (In the S-matrix case 
b -- - /~  implies violation of parity. While this is possible, we do not explore 
the case b @/~ further.) 

In what follows, we will also take d = d, i.e., a = 1. This is because 
none of the equations can determine a: either the equations contain only 
d's, with one d in each term (and likewise for d), or if d and d occur, they 
occur together. Thus if we solve the ease d = d, we can generate another 

with aT= d/ ( -d ,  ~ = ( - d d  obeying all the equations. In the eight-vertex 
problem this is no advance since only the combination dd enters the 
partition function. In the S-matrix case crossing [Eq. (2.2)] requires that if 
Sc = S~, then S a = S a. 

For the rest of the analysis, it is convenient to divide both sides of 
these equations by a factor c(O)c(O + O')c(O'). Ratios like a(O)/c(O) will 
be denoted by capital letters, A (0) in this case. We get the equations 

DBB + AD 1 = DA-A- + A 1 D 

DB 1 + ADB = BD.~ + 1 BD 

1A1 + B1 B  = A1A + D.~D 

l l B  + BA1 = AB1 + DDB 

(A10) 

(All) 

(A12) 
(A13) 
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and four more with A ~-->.~ named (A1--0) through (A1--3), respectively. In 
these equations the arguments of the functions are 0, 0 + 0' and 0', 
respectively, going from left to right with 1 standing for the ratio c / c .  Thus 
1B/7 -= 1B(O + 0')/7(0') ,  etc. Now set 0 = 0 in (A13). We get 

B(O) + / 7 ( O ' ) B ( O ' )  = B(O') /7(O')  + B(O)D2(O) (A14) 

Since we do not want D 2 -- 1 for all 0, we set 

B(0) = 0 (A15) 

Now set 0' -- 0 in Eq. (A11), and recall that B(0) -- 0. Then 

D ( 0 ) [ 1  - i T ( 0 ) ]  -- D(0) 

If we do not want D(O) -- const, we must choose 

D(0) = 0 (A16) 

A ( 0 )  = 1 (A17) 

From Eq. (A11), we get also 

A (0) = 1 (A18) 

The next step is to follow Zamolodchikov, (6) differentiate Eqs. (A10)-(A13) 
with respect to 0 and set 0 -- 0. Letting a A = A(O) =- dA/dOIo=o, etc., we 
get 

b = a D [ A  2 -- B 2] + (aA - a~)D (a19)  

aDB -I-- a x D B  + IkB = CtBD/7 + B D  (A20) 

A = aAA -- aBB + aD/TD (A21) 

1~ = aBA -- aAB -- aDBD (A22) 

and four more with aA~--)a~, A~--~/7, labeled (A1--9) to (A2--2). Consider 
(A22) minus (A22). We get 

A _ / 7 _  ~ A -  ax - -  B (A23) 
Ol B 

Now consider (A19) minus (A19): 

A 2 _ y2  _ 2 aA -- a~ D (A24) 
ao 

It now becomes convenient to work with the combinations 

A - i T  A - / 7  
hi  - 2 ' h2 - 2 

(with a 1 and a 2 defined as usual). Some simple manipulations tell us that 
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a 2 = 0 and give us an equation for h 2 alone: 
2 2 

= ( 1  - - + 

which is of the elliptic type. 
We skip the rest of the details and mention just the following: 
(i) There are four ct's in the equations. One of them, a 2, can be 

shown to be zero. One more is not really a variable since changing it only 
changes O by a factor. In the S-matrix case, it is chosen to ensure crossing. 
Thus we have a two-parameter family of solutions at each 0. 

(ii) We have divided all the weights by a factor cn(OK'/~r,k) to give 
them the desired crossing properties. 
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